Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JDS Commun ; 5(1): 28-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223387

RESUMEN

The development of an across-country genomic evaluation scheme is a promising alternative for enlarging reference populations and successfully implementing genomic selection in small ruminant populations. However, the feasibility of such evaluations depends on the genetic similarity among the populations, and therefore, high connectedness and high genetic correlations between the traits recorded in different countries or populations are needed. In this study, we evaluated the feasibility of performing an across-country genomic evaluation for milk production and type traits in Alpine and Saanen goats from Canada, France, Italy, and Switzerland. Variance components and genetic parameters, including genetic correlations between traits recorded in different countries, were calculated using combined phenotypes, genotypes, and pedigree datasets. The (co)variance component analyses were performed within breed, either based only on pedigree information or also incorporating genomic information. Across-country genetic parameters were calculated for 3 representative traits (i.e., milk yield, fat content, and rear udder attachment). The heritability estimates ranged from 0.10 to 0.50, which are consistent with previous estimates reported in the literature. The genetic correlations for rear udder attachment ranged from 0.75 (between France and Italy, for the Alpine breed without genomic information) to 0.95 (between Canada and France, for the Saanen breed with genomic information), whereas for fat content, between France and Italy, they ranged from 0.75 in the Alpine breed without genomic information to 0.78 in the Alpine breed with genomic information. However, genetic correlations for milk yield were only estimable between France and Italy, with a moderate value of 0.45 for the Alpine breed with or without genomic information, and of 0.22 and 0.26 in the Saanen breed with and without genomic information, respectively. These low genetic correlations for milk yield could be due to several factors, including the trait definition in each country and genotype-by-environment interactions (GxE). The high genetic correlations found for fat content and rear udder attachment indicate that these traits might be more standardized across countries and less affected by GxE effects. Thus, an international genomic evaluation for these traits might be feasible. Further studies should be performed to understand the surprisingly lower genetic correlations between milk yield across countries. Furthermore, additional efforts should be made to increase the genetic connection among the Alpine and Saanen goat populations in the 4 countries included in the analyses.

2.
Front Genet ; 13: 862838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783257

RESUMEN

Genomic prediction of breeding values is routinely performed in several livestock breeding programs around the world, but the size of the training populations and the genetic structure of populations evaluated have, in many instances, limited the increase in the accuracy of genomic estimated breeding values. Combining phenotypic, pedigree, and genomic data from genetically related populations can be a feasible strategy to overcome this limitation. However, the success of across-population genetic evaluations depends on the pedigree connectedness and genetic relationship among individuals from different populations. In this context, this study aimed to evaluate the genetic connectedness and population structure of Alpine and Saanen dairy goats from four countries involved in the European project SMARTER (SMAll RuminanTs Breeding for Efficiency and Resilience), including Canada, France, Italy, and Switzerland. These analyses are paramount for assessing the potential feasibility of an across-country genomic evaluation in dairy goats. Approximately, 9,855 genotyped individuals (with 51% French genotyped animals) and 6,435,189 animals included in the pedigree files were available across all four populations. The pedigree analyses indicated that the exchange of breeding animals was mainly unilateral with flows from France to the other three countries. Italy has also imported breeding animals from Switzerland. Principal component analyses (PCAs), genetic admixture analysis, and consistency of the gametic phase revealed that French and Italian populations are more genetically related than the other dairy goat population pairs. Canadian dairy goats showed the largest within-breed heterogeneity and genetic differences with the European populations. The genetic diversity and population connectedness between the studied populations indicated that an international genomic evaluation may be more feasible, especially for French and Italian goats. Further studies will investigate the accuracy of genomic breeding values when combining the datasets from these four populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...